Ejercicios resueltos de gases
- Belén Aguilar Zúñiga
- hace 2 años
- Vistas:
Transcripción
1 Ejercicios resueltos de gases Programa de Acceso Inclusivo, Equidad y Permanencia EJERCICIO 1. El volumen de cierta masa de gas es de 10 L a 4,0 atm de presión. Cuál es su volumen si la presión disminuye a 2,0 atm a temperatura constante? RECUERDA QUE: la Ley de Boyle establece que a temperatura y cantidad de materia constante de gas, el volumen es inversamente proporcional a su presión Se pide calcular el volumen de una masa de gas cuando la presión disminuye, manteniéndose constante la temperatura y la masa del gas. V 1 = 10 L P 1 = 4,0 atm. P 2 = 2,0 atm. P 1 V 1 = P 2 V 2 4,0 atm 10 L = 2,0 atm V 2 V 2 = 4 atm 10 L 2 atm V 2 = 20 L EJERCICIO 2. Se tiene un gas a 10 C en un cilindro con émbolo móvil. Suponiendo que la presión permanece constante, cuál será la temperatura a la que el volumen aumentará al doble? RECUERDA QUE: la Ley de Charles establece que para una masa fija de gas, a presión constante, el volumen de un gas es directamente proporcional a la temperatura. En este problema, se pide determinar la temperatura a la cual un determinado gas aumenta su volumen al doble del inicial, eso significa que V 2 es igual a dos veces (doble) el volumen inicial, considerando que la presión y la masa del gas permanecen constantes, se debe aplicar la ley de Charles. V 1 T 1 = V 2
2 V 1 = V 1 T 1 = 10 C K = 283K V 2 = 2 V 1 V K = 2 V 1 = 283 K 2 V 1 V 1 = 566 K C = K 273K C = 566K 273K C = 293 C EJERCICIO 3. El volumen de un gas a 35 C y 1 atm. de presión es de 200 L Qué volumen ocupará el gas a 65 C y a una presión de 750 mmhg? Se pide calcular el volumen que ocupará un gas cuando su presión y temperatura cambia de las condiciones iniciales, para esto, primero se deben convertir las temperaturas a Kelvin y las presiones dejarlas en las mismas unidades. Puede ser cualquier unidad de presión pero ambas en las mismas unidades. V 1 = 200L T 1 = 35 C K = 308K P 1 = 1 atm = 760mmHg V 2 = x T 1 = 65 C K = 338K P 2 = 750mmHg Utilizando la ley General de los gases P 1 V 1 T 1 760mmHg 200L 308 K V 2 = = P 2 V 2 = 750mmHg V 2 338K 760mmHg 200L 338K 308K 750mmHg V 2 = 222 L
3 EJERCICIO 4. Un recipiente de 4,0 L contiene 7,0 gramos de un gas a 1,2 atm de presión y 303 K de temperatura. Determina la masa molar del gas. V 1 = 4,0L T 1 = 303K P 1 = 1,2 atm m gas= 7,0 gramos Para poder determinar la masa molar del gas, es necesario saber la cantidad de moles, a través de la ecuación de los gases ideales. Reemplazando 1,2atm 4,0L = n 0,082 (atm L/mol K) 303K 1,2atm 4,0L 0,082 atm L/mol K 303K 0,19 moles Usando la fórmula de moles, reemplazando la masa del gas y los moles anteriormente calculado, se obtiene la masa molar del gas. masa MM MM = masa n MM = 7,0 gr 0,193 moles MM = 36,3 g/mol EJERCICIO 5. Una cantidad fija de un gas a temperatura constante ejerce una presión de 737 mm Hg y ocupa un volumen de 20,5 L. Calcule el volumen que el gas ocupará si se aumenta la presión a 1,80 atm. P 1 = 737 mmhg V 1 = 20,5L V 2 = x P 2 = 1,80 atm
4 Se debe convertir las unidades de las presiones a la misma unidad y luego reemplazar en la fórmula de la ley de Boyle (relaciona volumen con presión). En este caso en particular puedes convertir las unidades de presiones a atm o a mmhg. Convertiremos las atmosferas a mm de Hg. 1 atm 1,8 atm = 760 mmhg x x = 1368 mmhg P 1 V 1 = P 2 V 2 737mmHg 20,5 L = 1368 mmhg V 2 V 2 = 737mmHg 20,5 L 1368 mmhg V 2 = 11,0 L EJERCICIO 6. Dos gramos de un gas ocupan 1,56 L a 25 ºC y 1,0 atm de presión. Cuál será el volumen si el gas se calienta a 35 ºC a presión constante? Masa= 2 gr V 1 = 1,56 L T=25 C =298 P 1 = 1 atm V 2 = x = 35 C = 308 Para poder determinar el volumen del gas se necesita ocupar la fórmula de la Ley de Charles, y convertir la temperatura a grados Kelvin. V 1 T 1 = V 2 1,56 L 298 K = V K
5 V 2 = 308 K 1,56L 298 K V 2 = 1,61 L EJERCICIO 7. Una masa de Neón ocupa 200 ml a 100 ºC. Halle su volumen a 0 ºC si la presión es constante. V 1 = 200 ml T 1 = 100 C =373 V 2 = x = 0 C = 273 Usando la fórmula que representa la Ley de Charles, reemplazando V 1 T 1 = V ml 273 K 373 K V 2 = = V ml 273 K 373 K V 2 = 146 ml EJERCICIO 8.Un tanque de acero contiene dióxido de carbono (CO 2 ) a 27 ºC y una presión de 9120 mm de Hg. Determinar la presión del gas (en atm) cuando se calienta a 100 ºC. T 1 = 27 C = 300K P 1 = 9120 mmhg = 100 C = 373K P 2 = x De acuerdo a la ley de Gay-Lussac se tiene: P 1 T 1 = P mmhg 300K = P 2 373K
6 P 2 = 9120mmHg 373K 300 K P 2 = 11339,2 mmhg Transformando a unidades de atmósferas (atm): 1 atm x atm = 760 mmhg 11339,2 mmhg P 2 = 14,9 atm EJERCICIO 8. Un tanque de almacenamiento contiene un gas a 5 ºC y 5 atm. Una válvula de seguridad del tanque explota cuando la presión supera el doble de la presión inicial, Hasta qué temperatura se puede calentar el tanque? T 1 = 5 C = 278K P 1 = 5 atm = x P 2 = 10 atm = P 1 T 1 = P 2 5 atm 278 K = 10 K 278 K 10 atm 5 atm = 556 K EJERCICIO 9. Cuántos moles contiene un gas en CNPT si ocupa un volumen de 336 L? CNPT: T = 0 C y P = 1 atm T 1 = 0 C = 273K P 1 = 1 atm
7 P V R T RECUERDA QUE: al usar la ecuación de los gases ideales, la presión debe estar en unidades de atm., el volumen en L y la temperatura en grados K. Estas unidades se debe a las de la constante de los gases. 1 atm 336L 0,082 L atm K mol 273K 15 moles EJERCICIO 9. Cuántos moles de un gas ideal contiene una muestra que ocupa un volumen de 65,4 cm 3 bajo una presión de 9576 mm de Hg y una temperatura de 39 ºC? x moles V= 65,4 cm 3 = 65,4 ml P = 9576 mmhg T = 39 C = 312 K Convirtiendo la presión: Convirtiendo el volumen: 1 atm 760 mmhg = x 9576 mmhg x = 1 atm 9576 mmhg 760 mmhg x = 12,6 atm 1 L 1000 cm 3 = x 65,4 cm 3 x = 65,4 cm3 1L 1000 cm 3 x = 6, L
8 Ahora reemplazando en la fórmula de la ley de gases ideales P V R T 12,6 atm 6, L 0,082 atm L mol K 312 K 3, moles EJERCICIO 10. Qué volumen ocupan 150 g de CO 2 a 100 ºC y 720 mm de Hg de presión? m=150 gr V= x P = 720mmHg T = 100 C = 373 K Masa atómica C = 12 g. Masa atómica O = 16 g. Para poder usar la fórmula de los gases ideales es necesario convertir la masa de CO 2 en moles de CO 2 usando: masa MM Y la presión debe convertirse en atmosfera: 150 gr 44 gr/mol 3,41 mol 1 atm 760 mmhg = x 720 mmhg x = 1 atm 720 mmhg 760 mmhg x = 0,947 atm
9 V = V = n R T P 3,41 mol 0,082 atm L mol K 373 K 0,947 atm V = 110 L EJERCICIO 11. Calcule la masa de 2 L de gas amoníaco (NH 3 ) en CNPT. CNPT: T = 0 C y P = 1 atm T 1 = 0 C = 273K P 1 = 1 atm V= 2 L m= x P V R T 1 atm 2 L 0,082 atm L mol K 273 K 0,089 moles Para calcular la masa del gas, masa MM masa = n MM masa = 0,089 mol 17,0 g/mol masa = 1,51g
10 EJERCICIO 12. Cierto recipiente de 10,00 L estalla si la presión interna es mayor de 50,0 atm. Cuál es la masa más grande de Helio que se puede introducir en el recipiente a 19 ºC? V= 10,00 L P = 50,0 atm m= x T = 19 C = 292 K Utilizando la fórmula de las gases ideales, se calculan los moles del gas que estarían en esas condiciones, y luego se convierten los moles en masa usando el peso atómico del He. P V R T 50,00 atm 10,00 L 0,082 atm L mol K 292 K 20,88 moles Para calcular la masa del gas, masa MM masa = n MM masa = 20,88 mol 4,002 g/mol masa = 83,56 g EJERCICIO 13. Una lata para rociar un aerosol cuyo volumen es de 325 ml contiene 3,00 g de propano (C 3 H 8 ) como propelente. Cuál es la presión en atm del gas en la lata a 28 ºC? V= 325 ml = 0,325L m= 3,0 g (C 3 H 8 ) P = x atm T = 28 C = 301 K MM= 44 g/mol
11 Se debe calcular el número de moles que corresponde a la masa de propano que se tiene, para luego reemplazar en la fórmula de la ley de gases ideales para así determinar la presión del gas. masa MM 3,0 g 44 g/mol 0,068 mol C 3 H 8 P = n R T V P = 0,068 mol 0,082 atm L mol K 301 K 0,325 L P = 5,16 atm EJERCICIO 14. Cuál será la masa de oxígeno contenida en un cilindro de 10 L a 10 atm y a 27 ºC? V= 10 L m= x g O 2 P = 10 atm T = 27 C = 300 K MM O 2 = 32 g/mol Utilizando la fórmula de los gases ideales, se calculan los moles del gas O 2 que estarían en esas condiciones, y luego se convierten los moles en masa usando la masa molar del O 2. P V R T 10 atm 10 L 0,082 atm L mol K 300 K
12 Para calcular la masa del gas O 2, Programa de Acceso Inclusivo, Equidad y Permanencia 4,07 moles masa MM masa = n MM masa = 4,1 mol 32,0 g/mol masa = 131 g EJERCICIO 15. Qué presión ejercen 13 g de He en una botella de 3,0 L a 200 ºC? m= 13,0 g He V= 3,0 L P = x atm T = 200 C = 473 K Masa atómica= 4,002 g. Se debe calcular el número de moles que corresponde a la masa de Helio que se tiene, para luego reemplazar en la fórmula de la ley de gases ideales para así determinar la presión del gas. masa MM 13,0 g 4,002 g/mol 3,25 mol de He P = n R T V P = 3,25 mol 0,082 atm L mol K 473 K 3,0 L P = 42 atm
13 EJERCICIO 16. Qué volumen ocupan 3, moléculas de un gas a 380 mm de Hg y a 0 ºC?. N moléculas = 3, moléculas V= x P = 380 mmhg T = 0 C = 273 K Para convertir la presión en unidades de atm se tiene: 1 atm 760 mmhg x atm 380 mmhg x = 0,500 atm Usando el número de Avogadro se determina el número de moles correspondientes a la cantidad de moléculas que se disponen, luego se reemplaza en la fórmula de la ley de los gases ideales y se obtiene el volumen que ocupa esa cantidad de moléculas. 1 mol de gas 6, moléculas de gas x mol de gas 3, moléculas de gas V = x = 0,500 mol de gas V = n R T P 0,500 mol 0,082 atm L mol K 273 K 0,500 atm V = 22,4 L EJERCICIO 17. El ozono presente en la estratosfera absorbe buena parte de la radiación solar dañina. Cuántas moléculas de ozono hay en 1 L de aire a 250K y 0,76 mm de Hg? n moléculas O 3 = x V= 1,0 L P = 0,76 mmhg T = 250 K
14 Para convertir la presión en unidades de atm se tiene: 1 atm 760 mmhg x atm 0,76 mmhg x = 0,001 atm Utilizando la fórmula de los gases ideales, se calculan los moles del gas O 3 que estarían en esas condiciones, y luego utilizando el número de Avogadro se determina la cantidad de moléculas de O 3 presentes. P V R T 0,001 atm 1,0 L 0,082 atm L mol K 250 K 5, moles 1 mol de gas 6, moléculas de gas 5, mol de gas x moléculas de gas x = 2, moléculas de gas EJERCICIO 18. Cuantos átomos de hidrógeno hay en 5 L medidos a 30 ºC y 600 mm de Hg? n átomos H = x V= 5 L P = 600 mmhg T = 30 C = 303 K Para convertir la presión en unidades de atm se tiene: 1 atm 760 mmhg x atm 600 mmhg x = 0,79 atm Utilizando la fórmula de los gases ideales, se calculan los moles del gas H que estarían en esas condiciones, y luego utilizando el número de Avogadro se determina la cantidad de átomos de H presentes.
15 P V R T 0,79 atm 5,0 L 0,082 atm L mol K 303 K 0,16 moles H 2 1 mol de H 2 6, moléculas de gas 0,16 mol de gas x moléculas de gas x = 9, moléculas de gas RECUERDA QUE: Para determinar el número de átomos se debe multiplicar el número de moléculas por dos, ya que cada molécula de hidrógeno tiene dos moles de átomos de H (H 2). 9, moléculas de gas 2 = 1, átomos de H Responsables académicos Corregida por comité Editorial PAIEP. Si encuentra algún error favor comunicarse Referencias y fuentes utilizadas Chang, R.; College, W. (2002).. (7ª. ed). México: Mc Graw-Hill Interamericana Editores S.A. T. Brown, E. Lemay, B. Bursten, C.Murphy., La Ciencia Central. (11ª.ed). Pearson Educación. Balocchi, E.; Boyssières, L.; Martínez, M.; Melo, M.; Ribot, G.; Rodríguez, H.; Schifferli, R.; Soto, H. (2002). Curso de General. (7a. ed.). Chile: Universidad de Santiago de Chile. Facultad de y Biología.
GUÍA DE EJERCICIOS GASES
GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química
Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla
LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P).
CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS N 3 TEMA: GASES IDEALES OBJETIVO: Interpretación de las propiedades de los gases; efectos de la presión y la temperatura sobre los volúmenes de los gases. PRERREQUISITOS:
LOS GASES Y SUS LEYES DE
EMA : LOS GASES Y SUS LEYES DE COMBINACIÓN -LAS LEYES DE LOS GASES En el siglo XII comenzó a investigarse el hecho de que los gases, independientemente de su naturaleza, presentan un comportamiento similar
ESTEQUIOMETRÍA. 3.- LEYES VOLUMÉTRICAS: 3.1. Ley de los volúmenes de combinación de gases o de Gay-Lussac. 3.2. Ley de Avogadro.
ESTEQUIOMETRÍA 1.- ECUACIONES. SÍMBOLOS Y FÓRMULAS QUÍMICAS. 2.- LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS: 2.1. Ley de la conservación de la masa o de Lavoisier. 2.2. Ley de las proporciones constantes
GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera
La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor
COLEGIO ROSARIO SANTO DOMINGO BANCO DE PREGUNTAS TEMA ESTADO GASEOSO GRADO DÉCIMO DOCENTE LAURA VERGARA
COLEGIO ROSARIO SANTO DOMINGO BANCO DE PREGUNTAS TEMA ESTADO GASEOSO GRADO DÉCIMO DOCENTE LAURA VERGARA PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA 1. A 1 atmosfera de presión y en recipientes
PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES
PROBLEMAS RESUELOS Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES A-01 -.- El "hielo seco" es dióxido de carbono sólido a temperatura inferior a -55 ºC y presión de 1 atmósfera. Una
Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P)
Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO Nombre Grupo Matrícula PROPIEDADES DE LOS GASES: I. Completa correctamente la siguiente tabla. PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) VOLUMEN (V)
Gases. Sustancias que existen como gases a 1.0 atm y 25 C. Características físicas de los gases
Sustancias que existen como gases a 1.0 atm y 25 C Gases Basado en Capítulo 5 de Química (Chang, 2007) Dr. Hernández-Castillo Características físicas de los gases Toman la forma y volumen de sus recipientes
TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES
TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen
Colegio La Salle TH. Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES.
2014 Colegio La Salle TH Prof. Leopoldo Simoza L. PROBLEMAS ACERCA DEL COMPORTAMIENTO DE LOS GASES. Tabla de contenidos Introducción... 2 I.- Variación en el volumen de un gas al modificar la presión,
TEMA 6 La reacción química
TEMA 6 La reacción química 37. Cuando se calienta el carbonato de bario se desprende dióxido de carbono y queda un residuo de óxido de bario. Calcula: a) La cantidad de carbonato que se calentó si el dióxido
Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión
LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,
GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero).
UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS I. Gases Primera Ley de la Termodinámica Equilibrio Térmico (Ley Cero). Gases - Primera ley de la Termodinámica Ley Cero. 1. Se mantiene
TEMA 7: (productos de la reacción) por la reorganización de los átomos formando moléculas nuevas. Para ello es
TEMA 7: REACCIONES QUÍMICAS Una Reacción Química es un proceso mediante el cual unas sustancias (reactivos) se transforman en otras (productos de la reacción) por la reorganización de los átomos formando
GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.
GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.
FÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación GAS LÍQUIDO SÓLIDO
Nombre echa de entrega ÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación. El aire, es materia? Por qué? Las propiedades fundamentales de la materia son la masa (cantidad de materia, expresada en kg en el
GASES barómetro Unidades
GASES Estado de la material: Alta Ec y bajas interacciones intermoleculares Son altamente compresibles y ocupan el volumen del recipiente que lo contiene. Cuando un gas se somete a presión, su volumen
TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha
TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color
Soluciones Actividades Tema 2 La materia: estados físicos
Soluciones Actividades ema La materia: estados físicos Actividades Unidad Pág. 37.- Cuál será el volumen que ocupa el gas del ejercicio anterior si la presión se triplica? Al triplicarse la presión, el
GUIA PRATICA TEMA: GASES IDEALES
UNIDAD 3: GASES (TEMA 2: GASES IDEALES) UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSE DE SUCRE VICE RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE QUÍMICA Asignatura:
Algunas sustancias gaseosas a T y P ambiente
LOS GASES Algunas sustancias gaseosas a T y P ambiente Fórmula Nombre Características O2 Oxígeno Incoloro,inodoro e insípido H 2 Hidrógeno Inflamable, más ligero que el aire. He Helio Incoloro, inerte,
Liceo de Aplicación Preuniversitario
Guía N 2 Contenidos: El aire Nuestro planeta está cubierto por una capa de aire llamada atmósfera. El aire que compone la atmósfera es una mezcla de gases distribuidos en distintas proporciones y su composición
ESTADOS DE AGREGACIÓN DE LA MATERIA
ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química
Equilibrio Químico Programa de Acceso Inclusivo, Equidad y Permanencia RECUERDA QUE: el Equilibrio Químico, se presenta cuando reacciones opuestas ocurren a velocidades iguales. La velocidad a la que se
UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO
UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO DEPARTAMENTO ACADÉMICO CIENCIAS M. RAMÍREZ G. 1 Dr. Miguel RAMÍREZ GUZMÁN Teoría Cinética Molecular Ofrece un modelo para explicar las propiedades de los
Electricidad y calor. Temario. Temario. Webpage: http://paginas.fisica.uson.mx/qb
Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley
FÍSICA Y QUÍMICA -Valdepeñas de Jaén-
Formulación: 0.- Formule o nombre los compuestos siguientes: a) Cromato de litio b) Carbonato de amonio c) 2,3-dimetilbutano d) Na 2 O 2 e) H 3 PO 4 f) CH 2 =CHCH 2 CH 2 CH 2 CHO Res. a) Li 2 CrO 4 ; b)
Problemas resueltos de termoquímica.
Problemas resueltos de termoquímica. 12 de noviembre de 2014 1. Variables termodinámicas. 1. Calcula el volumen molar en ml/mol del H 2 O a 1 atm y 100 C si su densidad es ρ = 0,958 gr/cm 3. V m = V/P
TEMA 2.- ESTADOS DE AGREGACIÓN DE LA MATERIA. GASES (I).
TEMA 2.- ESTADOS DE AGREGACIÓN DE LA MATERIA. GASES (I). 1. Introducción. 2. Leyes de los gases ideales. Concepto de presión. Relación entre p y V de un gas. Ley de Boyle. Relación entre T y V de un gas.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva 3, Ejercicio 6,
Leyes de los Gases con Aplicación a la Compresión del Aire.
2AUTOMATIZACIÓN GUIA 2. VÍCTOR HUGO BERNAL T. Leyes de los Gases con Aplicación a la Compresión del Aire. En el compresor, los fluidos que son comprimidos pueden ser de diversa naturaleza, generalmente
2 Sistemas materiales
EJERCICIOS PROPUESTOS 2.1 Indica cuáles de las siguientes expresiones definen sistemas materiales y cuáles se refieren a sus propiedades. Una hoja de papel, el butano de un encendedor, el sabor amargo,
Física y química 1º bachillerato
TEMA 2: GASES. PROPIEDADES. LEYES. TEORIA CINETICO-MOLECULAR. 1.- Estados de agregación de la materia. Cambios de estado. 2.- Teoría cinético-molecular. 3.- Leyes de los gases. 3.1. Ley de Boyle-Mariotte.
2.- Ley de la conservación de la masa
La materia. Leyes fundamentales de la Química. Disoluciones. Leyes de los gases. Contenidos P Introducción P Ley de la conservación de la masa P Ley de las proporciones definidas P Ley de las proporciones
+C 2 + 4.5O 2 CH 4 H 2 +H 2 ---- 2CO 2. O O lo que es lo mismo: (g) + 2O 2. (g) + H 2. O(g) C 2. (g)+2.5o 2. + Ygr C. Xgr CH 4
mailto:lortizdeo@hotmail.com I.E.S. Francisco Grande Covián Introducción Química º y Repaso 1º Bachiller http://www.educa.aragob.es/iesfgcza/depart/depfiqui.htm 9/06/009 Química ªBachiller 1.- Una mezcla
LEY CERO DE LA TERMODINÁMICA Y TEMPERATURA.
ara aprender Termodinámica resolviendo problemas Silvia érez Casas RESIÓN. F La presión se define como:. La presión ejercida por un gas se debe al A incesante choque de las moléculas que lo constituyen
Página 34: Temperatura constante. Ley de Boyle-Mariotte:
Soluciones de las actividades de la segunda unidad... 3º ESO 2.- En un recipiente de 5 L se introduce gas oxígeno a la presión de 4 atm Cuál será el volumen si la presión se triplica sin que varíe su temperatura?
PROBLEMAS Y CUESTIONES DE LAS OLIMPIADAS DE QUÍMICA SERGIO MENARGUES IRLES FERNANDO LATRE DAVID AGOSTO 2007 INTRODUCCIÓN El aprendizaje de la Química constituye un reto al que se enfrentan cada año
TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA
1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente
CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES.
CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES. CUESTIONES E1S2012 Se disponen de tres recipientes que contienen en estado gaseoso 1 L de metano, 2 L de nitrógeno
CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES.
CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES. CUESTIONES E1S2014 La fórmula empírica de un compuesto orgánico es C 4 H 8 S. Si su masa molecular es 88, determine:
Estequiometría PAU- Ejercicios resueltos
Estequiometría PAU- Ejercicios resueltos 2012-Septiembre Pregunta B4. Una muestra de 15 g de calcita, que contiene un 98% en peso de carbonato de calcio puro, se hace reaccionar con ácido sulfúrico del
1. La magnitud 0,0000024mm expresada en notación científica es: a) 2,4 10 6 mm b) 2,4 10 5 mm c) 24 10 5 mm d) 24 10 6 mm
Se responderá escribiendo un aspa en el recuadro correspondiente a la respuesta correcta o a la que con carácter más general suponga la contestación cierta más completa en la HOJA DE RESPUESTAS. Se facilitan
EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II
Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta
CALCULO DE CONCENTRACIONES DE AGENTES QUÍMICOS
1 CALCULO DE CONCENTRACIONES DE AGENTES QUÍMICOS El objetivo prioritario y fundamental de la Higiene Industrial es la prevención de las enfermedades profesionales originadas por los agentes contaminantes
CAPÍTULO 5º. Resumen de teoría: Regla de las fases: ϕ Número de fases. r Número de reacciones químicas. Ejercicios y problemas de Termodinámica I
CAPÍULO 5º Ejercicios y problemas de ermodinámica I ransiciones de fase. Regla de las fases. Resumen de teoría: Regla de las fases: ϕ + l = c r ρ + ϕ Número de fases. r Número de reacciones químicas. l
Exámenes Selectividad Comunidad Valenciana de la especialidad de Química: EJERCICIOS SOBRE TERMOQUÍMICA
Exámenes Selectividad Comunidad Valenciana de la especialidad de Química: EJERCICIOS SOBRE TERMOQUÍMICA Septiembre 2012; Opción B; Problema 2.- La combustión de mezclas de hidrógeno-oxígeno se utiliza
Los gases y la Teoría Cinética
2 Los gases y la Teoría Cinética Objetivos Antes de empezar En esta quincena aprenderás a: Distinguir los distintos estados de la materia. Sus Propiedades. Concretar el modelo de gas que vamos a utilizar.
DIFUSIÓN - TRANSPORTE DE GASES EN SANGRE. Material de uso interno
DIFUSIÓN - TRANSPORTE DE GASES EN SANGRE Material de uso interno 2010 Hoy hablaremos de: * Leyes de los gases: aspectos aplicados * Hematosis ó intercambio alvéolo-capilar * Transporte de gases en sangre
TERMODINÁMICA Tema 10: El Gas Ideal
TERMODINÁMICA Tema 10: El Gas Ideal Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Ecuación de estado Experimento de Joule Capacidades
CECYT No. 1 SOLUCIÓN DEL BANCO DE REACTIVOS CORRESPONDIENTE AL PRIMER CORTE DEL CURSO DE QUÍMICA II CUARTO SEMESTRE ÁREA CIENCIAS FÍSICO-MATEMÁTICAS.
INSTITUTO POLITÉCNICO NACIONAL CECYT No. 1 GONZALO VÁZQUEZ VELA SOLUCIÓN DEL BANCO DE REACTIVOS CORRESPONDIENTE AL PRIMER CORTE DEL CURSO DE QUÍMICA II CUARTO SEMESTRE ÁREA CIENCIAS FÍSICO-MATEMÁTICAS.
DISOLUCIONES Y ESTEQUIOMETRÍA
DISOLUCIONES Y ESTEQUIOMETRÍA DISOLUCIONES 1.-/ Se disuelven 7 gramos de NaCl en 50 gramos de agua. Cuál es la concentración centesimal de la disolución? Sol: 12,28 % de NaCl 2.-/ En 20 ml de una disolución
Laboratorio 4. Cocientes de capacidades de calor de gases
Laboratorio 4. Cocientes de capacidades de calor de gases Objetivo Determinar el cociente de capacidades de calor () para gases como dióxido de carbono (CO ) y nitrógeno (N ) utilizando la expansión adiabática.
Ejercicios 4 (Gases)
Profesor Bernardo Leal Química Ejercicios 4 (Gases) Leyes de los gases: 1) Una cantidad fija de gas a 23 ºC exhibe una presión de 748 torr y ocupa un volumen de 10,3 L. a) Utilice la ley de Boyle para
Capítulo 6-1. Representación Macroscópica vs. Microscópica
Capítulo 6 Gases 1 Capítulo 6 Gases 6.1 -Propiedades de los Gases: Presión de gas 6.2 - Las leyes simples de gas 6.3 - La combinación de las Leyes de los gases: El gases ideales y las ecuaciones generales
Director de Curso Francisco J. Giraldo R.
Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton
Los estados de la materia. Los gases
Recursos y enlaces La materia se puede encontrar en la naturaleza en tres estados de agregación: sólido, líquido y gaseoso. El paso de un estado de la materia a otro se hace o bien absorbiendo energía
PRUEBA ESPECÍFICA PRUEBA 201
PRUEBA DE ACCES A LA UNIVERSIDAD MAYRES DE 5 AÑS PRUEBA ESPECÍFICA PRUEBA 01 PRUEBA SLUCINARI HAUTAPRBAK 5 URTETIK 014ko MAIATZA DE 5 AÑS MAY 014 Aclaraciones previas Tiempo de duración de la prueba: 1
Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES
Problemas de Fundamentos de Química (1º Grado en Física) Tema 2. FUERZAS INTERMOLECULARES 2.1. Calcula la presión que ejerce 1 mol de Cl 2 (g), de CO 2 (g) y de CO (g) cuando se encuentra ocupando un volumen
1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para levantar un objeto, 3. Describir y explicar el funcionamiento del modelo
Experimento 11 GAS IDEAL Objetivos 1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para levantar un objeto, 3. Describir y explicar el funcionamiento del modelo Teoría La termodinámica
EJERCICIOS DE REACCIONES QUÍMICAS. ESTEQUIOMETRÍA
EJERCICIOS DE REACCIONES QUÍMICAS. ESTEQUIOMETRÍA La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para
V 1 P V T V n V V V 1 P (con T y n constantes) (Ley de Boyle) T (con P y n constantes) (Ley de Charles) n (con T y P constantes) (Ley de Avogadro) V V nt P nt R P PV o nrt R 1 atm 22 414 L 0 08206 Latm
EJERCICIOS FÓRMULA EMPÍRICA Y MOLECULAR
1.- Calcula la fórmula empírica de un hidrocarburo que en un análisis dio la siguiente composición: 85,63% de C y 14,3% de H (Soluciones al final) 2.-El análisis de un compuesto dio la siguiente composición:
ENERGÍA INTERNA DE UN SISTEMA
ENERGÍA INTERNA DE UN SISTEMA Definimos energía interna U de un sistema la suma de las energías cinéticas de todas sus partículas constituyentes, más la suma de todas las energías de interacción entre
FASES Y ESTADOS DE LA MATERIA. Estados de la materia CAMBIOS DE FASE Y DIAGRAMAS DE FASE. Fase: CAMBIOS DE FASE FASE Y ESTADOS DE LA MATERIA
FASES Y ESTADOS DE LA MATERIA CAMBIOS DE FASE Y DIAGRAMAS DE FASE Estados de la materia Bibliografía: Química la Ciencia Central - T.Brown, H.Lemay y B. Bursten. Quimica General - R. Petruci, W.S. Harwood
PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.
PROBLEMAS RESUELTOS EQUILIBRIO TERMICO Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga
TERMOQUÍMICA QCA 01 ANDALUCÍA
TERMOQUÍMICA QCA 1 ANDALUCÍA 1.- El suluro de cinc al tratarlo con oxígeno reacciona según: ZnS(s) + 3 O (g) ZnO(s) + SO (g) Si las entalpías de ormación de las dierentes especies expresadas en kj/mol
Química 2º Bach. B Cálculos elementales 09/11/04 Nombre: Correo electrónico: Laboratorio. Problemas DEPARTAMENTO DE FÍSICA E QUÍMICA
DEPARTAMENTO DE FÍSICA E QUÍMICA Química 2º Bach. B Cálculos elementales 09/11/04 Nombre: Correo electrónico: Problemas 1. Un recipiente cerrado de 10,0 dm 3 contiene butano gas a 2 0 C y 740 mmhg. Otro
III. ESTADOS DE LA MATERIA
III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen
Ejercicios de la unidad didáctica 2.- Estados físicos de la materia: Estados de agregación de la materia
Nombre y apellidos: Ejercicios de la unidad didáctica 2.- Estados físicos de la materia: Estados de agregación de la materia La materia puede presentarse en estado sólido, líquido o gaseoso. Son los llamados
EJERCICIOS RESULTOS DE ESTADOS DE AGREGACIÓN DE LA MATERIA. ESTUDIO DEL ESTADO GAS
Estudio de los gases Ejercicio resuelto nº 1 Expresa 75 K en grados Fahrenheit. Para obtener los grados Fahrenheit partiendo de temperatura absoluta (Temperatura Kelvin) debemos calcular primero loa grados
ESTADO GASEOSO LEYES PARA GASES IDEALES
ESTADO GASEOSO LEYES PARA GASES IDEALES Estados de agregación COMPORTAMIENTO DE LOS GASES No tienen forma definida ni volumen propio Sus moléculas se mueven libremente y al azar ocupando todo el volumen
0,5 =0,7 0,35 0,5 =0,7
1. El pentacloruro de fósforo se disocia según el equilibrio homogéneo en fase gaseosa: PCl 5 (g) PCl (g) + Cl (g). A una temperatura determinada, se introducen en un matraz de medio litro de capacidad
La uma, por ser una unidad de masa, tiene su equivalencia en gramos:
UNIDAD 2 Magnitudes atómico-moleculares Introducción Teórica La masa de un átomo depende del átomo en cuestión, es decir del número de protones y neutrones que contenga su núcleo. Dicha magnitud es muy
CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES.
CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES. CUESTIONES E1S2013 La fórmula molecular del azúcar común o azúcar de mesa (sacarosa) es C12H22O11. Indique razonadamente
Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)
Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =
FISICOQUÍMICA PARA ESTUDIANTES DE BIOANÁLISIS
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR UNIDAD DE ESTUDIOS BÁSICOS DEPARTAMENTO DE CIENCIAS FISICOQUÍMICA PARA ESTUDIANTES DE BIOANÁLISIS Autor: Licdo. Luis Ramos Ciudad Bolívar, ABRIL 2014. PRESENTACIÓN
Los gases y la Teoría Cinética
Para practicar Utiliza tu cuaderno y trata de resolver los siguientes ejercicios: 1.-En una tabla similar a la siguiente, introduce las propiedades características de un SÓLIDO, un LÍQUDO o un GAS, como
Materiales recopilados por la Ponencia Provincial de Química para Selectividad TEMA 1: QUÍMICA DESCRIPTIVA EJERCICIOS DE SELECTIVIDAD 96/97
TEMA 1: QUÍMICA DESCRIPTIVA EJERCICIOS DE SELECTIVIDAD 96/97 1. De un recipiente que contiene 32 g de metano, se extraen 9 10 23 moléculas. a) Los moles de metano que quedan. b) Las moléculas de metano
CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti).
1. CANTIDADES DE CALOR CALOR Aun cuando no sea posible determinar el contenido total de energía calorífica de un cuerpo, puede medirse la cantidad que se toma o se cede al ponerlo en contacto con otro
PROBLEMAS Y CUESTIONES DE FÍSICA Y QUÍMICA DE 3º ESO :
PROBLEMAS Y CUESTIONES DE FÍSICA Y QUÍMICA DE 3º ESO : Tema 1 : La medida y el método científico 1).- Efectúa las siguientes conversiones de unidades : convertir : convertir : convertir: convertir: 20
TEMA I: REACCIONES Y ESTEQUIOMETRIA
TEMA I: REACCIONES Y ESTEQUIOMETRIA 1. De un recipiente que contiene 32 g de metano, se extraen 9 10 23 moléculas. a) Los moles de metano que quedan. b) Las moléculas de metano que quedan. c) Los gramos
I. ESTEQUIOMETRÍA. Estas relaciones pueden ser:
I. ESTEQUIOMETRÍA Objetivo: Reconocerá la trascendencia de la determinación de las cantidades de reactivos y productos involucrados en una reacción química valorando la importancia que tiene este tipo
Ejercicios Tema 2. Versión 16.1
Ejercicios Tema 2. Versión 16.1 Nombre: FICHA 1 DE REFUERZO 1. Justifica, aplicando la teoría cinética: «Los sólidos tienen forma propia, mientras que los líquidos adoptan la forma del recipiente que los
Termodinámica química
Termodinámica química E S Q U E M A D E L A U N I D A D 1.1. El sistema termodinámico páginas 139/140 1.2. Proceso termodinámico página 140 4.1. Relación entre U y H página 145 4.2. Ecuación termoquímica.
UNIDAD Nº 1: GASES REALES
UNIDAD Nº 1: GASES REALES UNIVERSIDAD NACIONAL DE CUYO FAC. DE CS AGRARIAS AÑO 2012 Lic. Liliana Albornoz 1 LEYES DE LOS GASES IDEALES 2 LEY DE BOYLE Ley de Boyle (1662) V = k 2 P PV = constante (k 2
Tema 9: Calor, Trabajo, y Primer Principio
1/34 Tema 9: Calor, Trabajo, y Primer Principio Fátima Masot Conde Ing. Industrial 2007/08 Tema 9: Calor, Trabajo, Primer Principio 2/34 Índice: 1. Introducción. 2. Capacidad calorífica. Calor específico.
Resultado: a) K ps = 6,81 10 11 M 4 ; b) No hay precipitado.
PRUEBA GENERAL OPCIÓN A PROBLEMA.- La solubilidad del Cr(OH) 3 es 0,13 mg ml 1 : a) Determina la constante de solubilidad K ps del hidróxido de cromo (III). b) Se tiene una disolución de CrCl 3 de concentración
P V = n R T LEYES DE LOS GASES
P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac
Gases 8/12/2014. La estructura y presión de un gas. Presión Fuerza por unidad de área. Unidad en SI
Gases La estructura y presión de un gas Los gases se componen de partículas que: se mueven rápidamente y al azar dentro de un envase. Viajan en linea recta hasta que chocan, empujan y rebotan. Ocupan todo
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA
BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría
MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE
MEDICIÓN DE PRESIÓN Y TEMPERATURA DURANTE UN CAMBIO DE FASE OBJETIVOS: Observar un cambio de fase líquido-vapor del etanol, y un cambio de fase vapor-líquido del etanol. Comprender experimentalmente el
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio, Opción B Reserva 1, Ejercicio 5, Opción A Reserva 1, Ejercicio 5, Opción B Reserva, Ejercicio,
BALANCE MÁSICO Y ENERGÉTICO DE PROBLEMAS AMBIENTALES
BALANCE MÁSICO Y ENERGÉTICO DE PROBLEMAS AMBIENTALES Cálculos en Ingeniería, procesos y variables de procesos. Temperatura y presión Temperatura y presión La presión se define como la cantidad d fuerza
atmosférico es mayor; más aún, si las posibilidades de reciclado natural de mismo se reducen al disminuir los bosques y la vegetación en general.
TODAS LAS PREGUNTAS SON DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA. RESPONDA LAS PREGUNTAS 45 A 51 DE ACUERDO CON Ciclo del Carbono El ciclo del carbono es la sucesión de transformaciones que presenta el
Compuestos comunes que son gses a temperatura ambiente. Gases - propiedades macroscópicas
Las propiedades químicas de un gas dependen de su naturaleza (elementos que lo forman y composición), sin embargo todos los gases tienen propiedades físicas marcadamente similares. Compuestos comunes que
ENERGÍA INTERNA PARA GASES NO IDEALES.
DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura
Termodinámica I: Calores específicos
Termodinámica I: Calores específicos I Semestre 2012 CALORES ESPECÍFICOS Se requieren distintas cantidades de energía para elevar un grado la temperatura de masas idénticas de diferentes sustancias. Es